Solution Sheet 1
Exercise 1.1.
For a,b € R, let a € L' ([a,b];R), B € C ([a,b];[0,00)) and u € C ([a, b]; R) satisfy
t
w < oy +/ Bsugds

for all ¢t € [a,b]. Prove the following versions of Gronwall’s Inequality (Lemmas 1.2.3, 1.2.4):

1. For all t € [a, b],
t
up < oy —I—/ asﬁsefst Brdr gs.
a

2. Under the additional assumption that « is constant, then for all ¢ € [a, b],

up < aefat Brdr.
Proof. We begin with the first part. For s € [a, b] define

S
Ts=¢e L ’Brdr/ Bruydr
a

Ty = ie*f:B’dT /,Brurdr—kefasﬁrdr d/ Bru,dr
ds a ds J,

s
= _5867 fa o / /BTquT +e fa ﬁrdrﬁsus
a

= <us - /8 /Brurdr> Bse” Ja Brdr

< Oésﬁse_ fas Brdr

thus

where we have used the assumption (1) in the last line. Observing that x, = 0, then

¢ ¢
Tt = Tp — Tg = / Teds < / agfse” Ja Brrgs,
a a

Rearranging from the definition of x and plugging in (2), we see that

t t t
/ Bsugds = ela Brdr g, < eJa ’Brdr/ agfse” Ja Brirgs — / asﬁsefst Brdr g
a

a a

Substituting this result into (1) completes the proof of the first part. For the second, we use that

« is constant and the first part to see that

t
u < o+ a/ Bsefst Brdr gs.
a

In fact one only needs that « is non-decreasing, and the result holds for a; replacing a.
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We observe that, on [a, ],
sttt ()
ds

hence

t
/ Bsefst Brdrgs — 1 4 elaBrdr
a

which gives the result upon substitution into (3). In the case where « is non-decreasing simply
repace « by a; in (3) and the rest follows identically.
O

Exercise 1.2.

Give an example of a stochastic process X whose law is constant in time, but is not stationary
(Definition 2.2.5).

Proof. Our example is X; = %Wt where W is a standard Brownian Motion. It is clear that for

all t > 0, X3 ~ N (0,1), though we show that the process is non-stationary by considering the
covariance between X, X; with s < t:

1 1
—E (W W;) = —s.
i ) =75
It is clear that this does not depend on only ¢ — s, and we can consider the cases s =1, t =2 and
s =2, t =3 as a counterexample. O

Cov (Xs,Xt) =E (Xth) =

Exercise 1.3.

Consider an ODE
Ty = f(we)
in R? with Euclidean norm ||-||, d > 1, where f is Lipschitz with Lipschitz constant K in R?. We
introduce the flow map associated to the ODE, which is a function ® defined for times s,t and a
point u € R? as the solution z of the ODE at time ¢ with ‘initial condition’ zs = u. We denote this
by ®:(u) and in the case where s = 0, simply ®;(u). Prove the following:

1. Forany s <t € R, ®;4(u) = ®4_5(u);
2. For any 0 < s <t, g (Ps(u)) = i(u);

3. For any t > 0,

sup [|@(u) = Dp(v)| < [lu—vfle"".
re[0,t]

Proof. We prove the parts in turn:

1. We use the explicit forms of solutions, namely that

t—s

By (1) = u+ / @@ ad @@=t [ @)

To compare the integrals we use a change of variables, writing

t—s
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3.

so that
Dyt (u) — rs( / [ (@sr(u)) = f(Pr_s(u))dr.

Taking the norm and using the Lipschitz property of f,
t
[@s,() = Br—s(u)]] S/ 1 (s () = f(Pr—s(u))lldr
< K [ 0r) — (i

By setting ¢y = ||®s+(u) — P1—s(u)||, the above reads

%SK[WW

from which we apply Gronwall’s Inequality where o = 0 to conclude that ¥y = 0 hence the
result.

. We observe that

Dot () /f o (@4 dww+/f )W+[fmA%me

—u—I—/f dr—u—i—/f )dr+/:f(‘1>

Taking the difference of these expressions,

t
Pyt (Ps(u)) — Pr(u) = / [ 1@ (Ps(w))] — f(@r(u)) dr

from which point the proof follows exactly as the previous part, taking the norm, using the
Lipschitz property and applying Gronwall.

u):u+/0 f(®s(u))ds and <I>T(v)21)+/0 f(Ps(v))ds

B (0) = Br(0) =u— ot [ @) J(Bu(0)ds

By taking norms on both sides, using the triangle inequality and bounding norm of integral
by integral of norm,

‘We have that

Therefore,
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having also used the Lipschitz assumption in the final line. Now we take the supremum over
r € [0,t] on both sides, and further bound the integrand by its supremum to see that

t
sup || @y (u) — @ (v)|| < [lu— v +/ K|[®4(u) — @s(v)|[ds
rel0,t] 0
t
<lu—vl[+ [ K sup [[®(u) — Dy (v)]|ds.
0 r€(0,s]

This is of the form (1) for u; = sup,cp 4[|®r(u) — @, (v)|, ¢ = @ = |lu —v[| and B; = K. By
applying the second statement of Exercise 1.1, then

sup ||, (u) — B, (v)]| < [lu — vllelo K9 = ||u — v]|eX*
rel0,t]

as required.

Exercise 1.4.

Suppose we have a pair of real valued ODEs,

th = f(xta Zl)

Yt = f(yt, 22)

where f: R x R — R is K-Lipschitz in each variable, uniformly across the other variable: that is
for every a € R the functions f(a,-) and f(-,a) are both K-Lipschitz. Here z!,2? € R are given.
Let ®* denote the flow for  and ®¥ denote the flow for y. Prove that for any ¢t > 0,

sup |®F (u') — @¥(u?)] < (Ju' — u?| + K|z' — 2%[t) "
rel0,t]

Proof. The difference equation for r > 0 is

O (ul) — ®Y(u?) = ut —u? + /OT f(@E(u), 2") — f (DY(v), 2?) ds.
To use the Lipschitz property of f we rewrite
F(RF(ul),2h) = f(RU(u),2%) = (@5 ('), 2') — [ (5 (uh), 2%) + F (@5 (u'), 2%) — f (®Y(u?),2?)
after which we take the absolute value of the difference equation and simplify to
|7 (u')— @Y (u®)| < |u1—u2\+/0T|f (@5 (uh), 1) = f (@5 ('), 22)[+]f (D5 (ul), 2%) —f (®Y(u?), 2?)|ds.
Using the uniform Lipschitz property,

,
|7 (u') = Y(u?)] < Ju' — v’ +K/ 2! = 2% + | @S (u') — @Y (u?)|ds
0

.
< \ul—u21+K1z1—z2!r+K/ | (u') — BY(u?)|ds.
0



We now take the supremum over r € [0,¢] and again take a supremum inside the integral as in the
previous exercise, obtaining

t

sup 97 (u!) — BY(e)] < [ul — |+ K|2' — 2t 4 K [ sup |85 (u) — Y(u?)|ds.
ref0,t] 0 relo0,s]

We apply the Gronwall Inequality of Exercise 1.1, assertion 2, for the function
o = |ut —u?| + K|zt - 22t
which is non-decreasing. Thus,

S?p]\(l)f(ul) — ¥ (u?)] < (Jut —u?| + K|2' — 22|t)
re(0,t

as required.

Exercise 1.5.

Consider the real valued ODE .
iy = —awe + Bf
where f € C!([0,00);R), @ € R and initial condition zg € R. Show that for any ¢ > 0 we have the
identity
t
xp=e Yxy + ,6’/ e_a(t_s)fsds. (4)
0
In particular,
t
x=e “xy+ 5/ e t=s)gf,
0

where the last term is defined in the Riemann-Stieltjes sense.

Proof. We employ the integrating factor method, rearranging the equation and multiplying by
t
eloads — ot 46 obtain .
eatdvt -+ eatom:t = Gat/Bft.

By design of this method the left hand side is simply % (eat

we obtain

x¢) so integrating both sides over [0, ]

t
ey — o = ﬁ/ e frdr.
0

Dividing through by e~ then gives (4). The second identity follows by standard properties of the
Riemann-Stieltjes integral (f is C'! so certainly of bounded variation on compact sets).
O

Exercise 1.6.** (Hard, involving stopping times which will be covered later in the
course, but an interesting comparison to the classical Gronwall Lemma!)

Fix ¢t > 0 and suppose that x,n are real-valued, non-negative stochastic processes. Assume,
moreover, that there exists constants ¢/, ¢ (allowed to depend on t) such that for P — a.e. w,

/ ns(w)ds < (5)
0
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and for all stopping times 0 < 60; < 0, <+,

O
E sup x, | < ¢k (ngj + 1) +/ Nsxsds | < oo.
r€[0;,0%] 0;

J

Prove that there exists a constant C' dependent only on ¢, é,t such that
E| sup o, | <C(E(xg) +1).
rel0,t]

Proof. We shall make explicit reference to this constant ¢, in defining a sequence of stopping times

j(w) :==t Ainf {r >0: /0 ns(w)ds > ;é}

for j =0,1,.... Clearly §p = 0 (P — a.s.). From the boundedness (5) uniformly over P — a.e. w,
there exists some finite N such that Oy =t (P — a.s.). Moreover for 0 < j < j+1 < N, from the
time continuity of the integral and characterisation of the first hitting times we have that

0j+1 p 1
<
/9_ 45 = 5

J

o>

P — a.s. (and is in fact an equality for j + 1 < N). From the assumed inequality we see that for

any such j,
0j+1
E sup x| < ¢k (acgj + 1) —I—/ NsTsds
T€[0;,0541] 0;

J
~ 1
< cE (:cgj + 1) 4+ — sup x
2¢ T€[0;,05+1]
and therefore
E sup @, | < 2¢E (xq, +1). (6)
r€[0;,041]
For 7 = 0 then

E| sup o, | <2¢E(xo+1)
r€(0,01]

and we use this along with (6) to make an inductive argument. Suppose that for some such j,

E ( sup ccr> < cE (zo+1) (7)

T‘E[O,@j]

for a general constant ¢ as seen throughout this proof, dependent on ¢, é,t. Then

E sup x| <E| sup x| +E sup @,
r€[0,0541] r€[0,05] r€[05,0541]

(x() + 1) + 2¢E (:ng + 1)

(o +1)+2¢E sup (z,+1)
TG[O,OJ'}

< cE (xg+ 1) + 2¢cE (xg + 1)
=cE(xo+1)

<cE
< clE



thanks to (6) and two applications of (7). Hence, by induction, we can conclude that (7) holds for
all j =0,..., N and in particular for 85 which is P — a.s. equal to t. This completes the proof. [



