
Solution Sheet 1

Exercise 1.1.

For a, b ∈ R, let α ∈ L1 ([a, b];R), β ∈ C ([a, b]; [0,∞)) and u ∈ C ([a, b];R) satisfy

ut ≤ αt +

∫ t

a
βsusds (1)

for all t ∈ [a, b]. Prove the following versions of Grönwall’s Inequality (Lemmas 1.2.3, 1.2.4):

1. For all t ∈ [a, b],

ut ≤ αt +

∫ t

a
αsβse

∫ t
s βrdrds.

2. Under the additional assumption that α is constant,1 then for all t ∈ [a, b],

ut ≤ αe
∫ t
a βrdr.

Proof. We begin with the first part. For s ∈ [a, b] define

xs = e−
∫ s
a βrdr

∫ s

a
βrurdr

thus

ẋs =

(
d

ds
e−

∫ s
a βrdr

)∫ s

a
βrurdr + e−

∫ s
a βrdr

(
d

ds

∫ s

a
βrurdr

)
= −βse−

∫ s
a βrdr

∫ s

a
βrurdr + e−

∫ s
a βrdrβsus

=

(
us −

∫ s

a
βrurdr

)
βse

−
∫ s
a βrdr

≤ αsβse
−

∫ s
a βrdr

where we have used the assumption (1) in the last line. Observing that xa = 0, then

xt = xt − xa =

∫ t

a
ẋsds ≤

∫ t

a
αsβse

−
∫ s
a βrdrds. (2)

Rearranging from the definition of x and plugging in (2), we see that∫ t

a
βsusds = e

∫ t
a βrdrxt ≤ e

∫ t
a βrdr

∫ t

a
αsβse

−
∫ s
a βrdrds =

∫ t

a
αsβse

∫ t
s βrdrds.

Substituting this result into (1) completes the proof of the first part. For the second, we use that
α is constant and the first part to see that

ut ≤ α+ α

∫ t

a
βse

∫ t
s βrdrds. (3)

1In fact one only needs that α is non-decreasing, and the result holds for αt replacing α.
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We observe that, on [a, t],

βse
∫ t
s βrdr =

d

ds

(
−e

∫ t
s βrdr

)
hence ∫ t

a
βse

∫ t
s βrdrds = −1 + e

∫ t
a βrdr

which gives the result upon substitution into (3). In the case where α is non-decreasing simply
repace α by αt in (3) and the rest follows identically.

Exercise 1.2.

Give an example of a stochastic process X whose law is constant in time, but is not stationary
(Definition 2.2.5).

Proof. Our example is Xt =
1√
t
Wt where W is a standard Brownian Motion. It is clear that for

all t > 0, Xt ∼ N (0, 1), though we show that the process is non-stationary by considering the
covariance between Xs, Xt with s < t:

Cov (Xs, Xt) = E (XsXt) =
1√
st
E (WsWt) =

1√
st
s.

It is clear that this does not depend on only t− s, and we can consider the cases s = 1, t = 2 and
s = 2, t = 3 as a counterexample.

Exercise 1.3.

Consider an ODE
ẋt = f(xt)

in Rd with Euclidean norm ∥·∥, d ≥ 1, where f is Lipschitz with Lipschitz constant K in Rd. We
introduce the flow map associated to the ODE, which is a function Φ defined for times s, t and a
point u ∈ Rd as the solution x of the ODE at time t with ‘initial condition’ xs = u. We denote this
by Φs,t(u) and in the case where s = 0, simply Φt(u). Prove the following:

1. For any s < t ∈ R, Φs,t(u) = Φt−s(u);

2. For any 0 ≤ s < t, Φs,t (Φs(u)) = Φt(u);

3. For any t ≥ 0,
sup
r∈[0,t]

∥Φr(u)− Φr(v)∥ ≤ ∥u− v∥eKt.

Proof. We prove the parts in turn:

1. We use the explicit forms of solutions, namely that

Φs,t(u) = u+

∫ t

s
f (Φs,r(u)) dr and Φt−s(u) = u+

∫ t−s

0
f (Φr(u)) dr.

To compare the integrals we use a change of variables, writing∫ t−s

0
f (Φr(u)) dr =

∫ t

s
f (Φr−s(u)) dr
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so that

Φs,t(u)− Φt−s(u) =

∫ t

s
f (Φs,r(u))− f (Φr−s(u)) dr.

Taking the norm and using the Lipschitz property of f ,

∥Φs,t(u)− Φt−s(u)∥ ≤
∫ t

s
∥f (Φs,r(u))− f (Φr−s(u))∥dr

≤ K

∫ t

s
∥Φs,r(u)− Φr−s(u)∥dr.

By setting ψt = ∥Φs,t(u)− Φt−s(u)∥, the above reads

ψt ≤ K

∫ t

s
ψrdr

from which we apply Grönwall’s Inequality where α = 0 to conclude that ψt = 0 hence the
result.

2. We observe that

Φs,t (Φs(u)) = Φs(u) +

∫ t

s
f (Φs,r (Φs(u))) dr = u+

∫ s

0
f (Φr(u)) dr +

∫ t

s
f [Φs,r (Φs(u))] dr

and

Φt(u) = u+

∫ t

0
f (Φr(u)) dr = u+

∫ s

0
f (Φr(u)) dr +

∫ t

s
f (Φr(u)) dr.

Taking the difference of these expressions,

Φs,t (Φs(u))− Φt(u) =

∫ t

s
f [Φs,r (Φs(u))]− f (Φr(u)) dr

from which point the proof follows exactly as the previous part, taking the norm, using the
Lipschitz property and applying Grönwall.

3. We have that

Φr(u) = u+

∫ r

0
f(Φs(u))ds and Φr(v) = v +

∫ r

0
f(Φs(v))ds.

Therefore,

Φr(u)− Φr(v) = u− v +

∫ r

0
f(Φs(u))− f(Φs(v))ds.

By taking norms on both sides, using the triangle inequality and bounding norm of integral
by integral of norm,

∥Φr(u)− Φr(v)∥ ≤ ∥u− v∥+
∫ r

0
∥f(Φs(u))− f(Φs(v))∥ds

≤ ∥u− v∥+
∫ r

0
K∥Φs(u)− Φs(v)∥ds
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having also used the Lipschitz assumption in the final line. Now we take the supremum over
r ∈ [0, t] on both sides, and further bound the integrand by its supremum to see that

sup
r∈[0,t]

∥Φr(u)− Φr(v)∥ ≤ ∥u− v∥+
∫ t

0
K∥Φs(u)− Φs(v)∥ds

≤ ∥u− v∥+
∫ t

0
K sup

r∈[0,s]
∥Φr(u)− Φr(v)∥ds.

This is of the form (1) for ut = supr∈[0,t]∥Φr(u)− Φr(v)∥, αt = α = ∥u− v∥ and βt = K. By
applying the second statement of Exercise 1.1, then

sup
r∈[0,t]

∥Φr(u)− Φr(v)∥ ≤ ∥u− v∥e
∫ t
0 Kds = ∥u− v∥eKt

as required.

Exercise 1.4.

Suppose we have a pair of real valued ODEs,

ẋt = f(xt, z
1)

ẏt = f(yt, z
2)

where f : R × R → R is K-Lipschitz in each variable, uniformly across the other variable: that is
for every a ∈ R the functions f(a, ·) and f(·, a) are both K-Lipschitz. Here z1, z2 ∈ R are given.
Let Φx denote the flow for x and Φy denote the flow for y. Prove that for any t ≥ 0,

sup
r∈[0,t]

|Φx
r (u

1)− Φy
r(u

2)| ≤
(
|u1 − u2|+K|z1 − z2|t

)
eKt.

Proof. The difference equation for r ≥ 0 is

Φx
r (u

1)− Φy
r(u

2) = u1 − u2 +

∫ r

0
f
(
Φx
s (u), z

1
)
− f

(
Φy
s(v), z

2
)
ds.

To use the Lipschitz property of f we rewrite

f
(
Φx
s (u

1), z1
)
− f

(
Φy
s(u

2), z2
)
= f

(
Φx
s (u

1), z1
)
− f

(
Φx
s (u

1), z2
)
+ f

(
Φx
s (u

1), z2
)
− f

(
Φy
s(u

2), z2
)

after which we take the absolute value of the difference equation and simplify to

|Φx
r (u

1)−Φy
r(u

2)| ≤ |u1−u2|+
∫ r

0
|f
(
Φx
s (u

1), z1
)
−f
(
Φx
s (u

1), z2
)
|+|f

(
Φx
s (u

1), z2
)
−f
(
Φy
s(u

2), z2
)
|ds.

Using the uniform Lipschitz property,

|Φx
r (u

1)− Φy
r(u

2)| ≤ |u1 − u2|+K

∫ r

0
|z1 − z2|+ |Φx

s (u
1)− Φy

s(u
2)|ds

≤ |u1 − u2|+K|z1 − z2|r +K

∫ r

0
|Φx

s (u
1)− Φy

s(u
2)|ds.
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We now take the supremum over r ∈ [0, t] and again take a supremum inside the integral as in the
previous exercise, obtaining

sup
r∈[0,t]

|Φx
r (u

1)− Φy
r(u

2)| ≤ |u1 − u2|+K|z1 − z2|t+K

∫ t

0
sup

r∈[0,s]
|Φx

r (u
1)− Φy

r(u
2)|ds.

We apply the Grönwall Inequality of Exercise 1.1, assertion 2, for the function

αt = |u1 − u2|+K|z1 − z2|t

which is non-decreasing. Thus,

sup
r∈[0,t]

|Φx
r (u

1)− Φy
r(u

2)| ≤
(
|u1 − u2|+K|z1 − z2|t

)
eKt

as required.

Exercise 1.5.

Consider the real valued ODE
ẋt = −αxt + βḟt

where f ∈ C1 ([0,∞);R), α ∈ R and initial condition x0 ∈ R. Show that for any t ≥ 0 we have the
identity

xt = e−αtx0 + β

∫ t

0
e−α(t−s)ḟsds. (4)

In particular,

xt = e−αtx0 + β

∫ t

0
e−α(t−s)dfs

where the last term is defined in the Riemann-Stieltjes sense.

Proof. We employ the integrating factor method, rearranging the equation and multiplying by

e
∫ t
0 αds = eαt to obtain

eαtẋt + eαtαxt = eαtβḟt.

By design of this method the left hand side is simply d
dt

(
eαtxt

)
so integrating both sides over [0, t]

we obtain

eαtxt − x0 = β

∫ t

0
eαrḟrdr.

Dividing through by e−αt then gives (4). The second identity follows by standard properties of the
Riemann-Stieltjes integral (f is C1 so certainly of bounded variation on compact sets).

Exercise 1.6.** (Hard, involving stopping times which will be covered later in the
course, but an interesting comparison to the classical Grönwall Lemma!)

Fix t > 0 and suppose that x,η are real-valued, non-negative stochastic processes. Assume,
moreover, that there exists constants c′, ĉ (allowed to depend on t) such that for P− a.e. ω,∫ t

0
ηs(ω)ds ≤ c′ (5)
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and for all stopping times 0 ≤ θj < θk ≤ t,

E

(
sup

r∈[θj ,θk]
xr

)
≤ ĉE

((
xθj + 1

)
+

∫ θk

θj

ηsxsds

)
<∞.

Prove that there exists a constant C dependent only on c′, ĉ, t such that

E

(
sup
r∈[0,t]

xr

)
≤ C (E(x0) + 1) .

Proof. We shall make explicit reference to this constant ĉ, in defining a sequence of stopping times

θj(ω) := t ∧ inf

{
r ≥ 0 :

∫ r

0
ηs(ω)ds ≥

j

2ĉ

}
for j = 0, 1, . . . . Clearly θ0 = 0 (P − a.s.). From the boundedness (5) uniformly over P − a.e. ω,
there exists some finite N such that θN = t (P− a.s.). Moreover for 0 ≤ j < j + 1 ≤ N , from the
time continuity of the integral and characterisation of the first hitting times we have that∫ θj+1

θj

ηsds ≤
1

2ĉ

P − a.s. (and is in fact an equality for j + 1 < N). From the assumed inequality we see that for
any such j,

E

(
sup

r∈[θj ,θj+1]
xr

)
≤ ĉE

((
xθj + 1

)
+

∫ θj+1

θj

ηsxsds

)

≤ ĉE

((
xθj + 1

)
+

1

2ĉ
sup

r∈[θj ,θj+1]
xr

)
and therefore

E

(
sup

r∈[θj ,θj+1]
xr

)
≤ 2ĉE

(
xθj + 1

)
. (6)

For j = 0 then

E

(
sup

r∈[0,θ1]
xr

)
≤ 2ĉE (x0 + 1)

and we use this along with (6) to make an inductive argument. Suppose that for some such j,

E

(
sup

r∈[0,θj ]
xr

)
≤ cE (x0 + 1) (7)

for a general constant c as seen throughout this proof, dependent on c′, ĉ, t. Then

E

(
sup

r∈[0,θj+1]
xr

)
≤ E

(
sup

r∈[0,θj ]
xr

)
+E

(
sup

r∈[θj ,θj+1]
xr

)
≤ cE (x0 + 1) + 2ĉE

(
xθj + 1

)
≤ cE (x0 + 1) + 2ĉE sup

r∈[0,θj ]
(xr + 1)

≤ cE (x0 + 1) + 2ĉcE (x0 + 1)

= cE (x0 + 1)
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thanks to (6) and two applications of (7). Hence, by induction, we can conclude that (7) holds for
all j = 0, . . . , N and in particular for θN which is P−a.s. equal to t. This completes the proof.
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